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This article examines the problem of periodic motions near collin-
ear points of libration in the plane restricted problem of three bodies.
With the aid of the Lyapunov methods, we demonstrate that around each
collinear point of libration, a continuous family of periodic motions
exists, dependent on one arbitrary constant. We examine the stability
of the indicated periodic motions and show that they are unstable.
Finally, we establish the orbital instability of the periodic motions
under study.

We shall proceed from differential equations, determining the
movement of a particle (zero mass) near any collinear point of libration.
To be definite, we shall examine point L,. The indicated equations can
be written as follows:
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where £ and n --particle coordinates in a system of coordinates with its
beginning at point L,, n?=1 + . and Q is determined by formula
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Finally, Ja| is the distance of the point of libration to the center
of gravity of two finite masses which are equal to 1 and u, respectively.
Since function(} is a holomorphic function of £ and mn, at least in the
direct proximity of the point of libration, it can be expanded into
Taylor's series, converging absolutely for all values of £ and n, the
moduli of which do not exceed known limits. This series can be
written in the form
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If we retain only the terms of the second degree in our expansion of
function ), Equation (1) will be transformed into linear equations with
constant coefficients. The determining equation of this linear system,
as is well known, has the form

x*~(p-q-4n°)x"-pq = 0. (7)
This equation has the following roots:
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where

Ne= 1+ p —f + Noff —4f(1 + ),

. (9)
Nz —l-op +f +N9f - 4f(1 + ).

\e always differs from zero and is positive. )\f becomes zero only
with n#0. Therefore, with all values of p other than zero, Equation(7)
possesses two purely imaginary and two real roots, one of which is
positive and the other negative. The presence of one positive root of
Equation (7) causes instability of collinear libration points in the
Lyapunov sense, which is a well-known fact.

Let us now examine the matter of the existence of periodic
motions near collinear points. This problem is solved without
difficulty, with the aid of Lyapunov's theorem alone, proof for which
can be found in his well known essay1 . This theorem can be for-
mulated as follows: if the determining equation of a system of disturbed
motion equations has two simple purely imaginary roots, whole
multiples of which are not equation roots, and if the latter does not




possess zero roots, any time it is possible to find periodic series of

a certain type which would formally satisfy the system of equations of
disturbed motion, the latter, in fact, has a periodic solution presented
by such series.

Thus, to find a periodic solution, it is necessary to set up series
of which all terms are periodic functions. Therefore, in the general
case, it is impossible to establish the existence of periodic solutions
a priori, for it is virtually impossible to determine all terms of an
infinite series.

Fortunately, there is at least one case whereby the existence of
a periodic solution can be established a priori. This will be a case
when equations of disturbed motion have a holomorphic integral,
independent of time, of a definite structure. For example, if equations
of disturbed motion have canonical form

dx, __9H dy, 3H ., a)
dt ay3’ dt "8X3! ’ L A ] 2

where H is a time-independent holomorphic function of variables x; and
y3 in which the terms of the lowest order generate a ground form, the
equations have integral H=const., and if the determining equation has

a pair of simple purely imaginary roots A\i and -\i, not possessing roots
of the type m\i, where m=0, +1, £2, £3,..., the disturbed motion
equations will, without doubt, have a periodic solution represented by
periodic series of known form. '

Let us see what can be said of the existence of periodic motions
near collinear libration points in the restricted problem of three bodies.
As we have seen, the determining equation in this problem always
has two simple purely imaginary roots and does not have (if u£0) zero
roots or roots of type m\i, where m is a whole number. It is further
known that system (1) has an integral independent of time. To become
convinced that this integral has the required form, it is sufficient to
reduce Equation (1) to canonical form, assuming

d dn
Ei= g —m-m m= g +n-§.

Then Equation (1) will be replaced by the following system:
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n? 1
H=0- = (£%40°) +n(Em-né1) -5 (£° + ). (11)

Since H is independent of time, Equation (10) has a holomorphic integral
in which the terms of the lowest order assume ground form H;, of
type

He= 206~ fn® + nlgmi-nga) -5 (85 + ). (12)

Therefore, system (10) indubitably has a periodic solution, and
consequently, such a solution will exist for system (1).

Thus, we have established the existence of periodic motions
near collinear points of libration, and it remains for us merely to
find these motions. As Lya.punov2 points out, for this we must proceed
as follows. Assuming c to stand for arbitrary constant and T for
series

2m
T:T(l+h2c2+h3c3+...) (13)
with indefinite coefficients h,, h; ,..., we shall insert in Equation (1)

a new independent variable T to replace t by substituting

T = ZTT(t—tQ).
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Constants h,, h;,... shall be selected in such a manner that transformed
equation
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will be satisfied by series

g:xo = CX +CZX2+C3X3+...,
(16)
2
n=yo=cy1 +cyz2 + ys; 4+ ...,
in which all coefficients, x,, y1, %2, yz,..., will be periodic functions

of T with common period 2w. Since the existence of a periodic solution
in our problem is known a priori, such series will indeed be found
and will be absolutely convergent at all values of T and values of ¢
satisfying condition

el < = . (17)

where € is a certain positive value differing from zero. Series (13)
will also converge absolutely with |¢| <&, and value T will be the
period of the found motion (in respect to time)., We have thus obtained
a continuous series of periodic motions depending on two arbitrary
constants, ty and c. Constant t; has no significant effect of the nature
of the motion, since we can assume that the family of periodic motions
depends solely on arbitrary constant c.

Determining in practice functions x;, vyi, X2, V2,..., we shall
obtain for them expressions of form

x; = Ay [cos T 4+ sin 'r] s

y1 = B [cos T - sin T] ,

X = A; sin 27+ C;, ,

2 2 Sin + G, (18)

vz = B, cos 2T

X3 = A, [cos 3T -sin 3T] , ‘

ys; = By [cos 37+ sin 37,
where A;, B;, Az, B;, C;,... are constants dependent only on .

For example,

2n P
A1=T, Bl=1+Yz

We shall not write out expressions for the remaining coefficients, in
view of their awkwardness.

Let us now turn to an investigation of the stability of the periodic
motions found by us. In the absolute sense, this problem is solved
immediately and in the negative. Indeed, let us examine any of the




found periodic motions. It corresponds to a certain value of constant
c, and consequently, a certain period T. Since the family of periodic
solutions is continuous in respect to ¢, there exists an innumerable
quantity of other periodic motions orbitally as close as desired to that
under examination. The periods of these orbitally close motions will
differ from the period of the motion in question, but they will differ
in a degree as small as desired. Let us now picture two particles
located at the initial moment in two periodic orbits as close as desired,
and possessing initial velocity coordinate and component values as
close as desired. Let us say that T and T, are corresponding periods
and let us assume, to be more definite, that T< T;. It is obvious
that after time interval T, the first particle will arrive at its initial
state at that time when the second has not yet been able to reach that
state. In other words, after time interval T, the second particle will
lag somewhat behind the first and this gap will continue to grow with
time. After a sufficiently large number of revolutions, our particles
will be separated a distance comparable to the dimensions of their
orbits and thus will cease being as close to one another as desired.
This means that each periodic motion obtained by us is unstable in
the Lyapunov sense. )

But instability of this type is not particularly interesting to us.
Indeed, the behavior of the other motions in our problem is still an
unknown, that is, motions not belonging to our periodic family. It
may occur that trajectories of all remaining motions, as close as
desired to periodic according to initial data, will always be as close
as desired. This will mean that the periodic motion is orbitally
stable. On the other hand, it may occur that motions will be found
in our problem as close to periodic as desired according to initial
data, the trajectories of which will not remain as close as desired to
periodic orbit, which will signify that this periodic motion is also
orbitally unstable.

To elucidate this important matter of orbital stability of periodic
motions near collinear points of libration we should examine Equation
(15), in which T is an independent variable. Indeed, in respect to T,
all periodic motions of the family possess common period 2w, as a
consequence of which instability effect disappears (an effect occuring
due to difference in periods of periodic orbits as close together as
desired). We shall examine the problem of stability of any of solutions
(16) of system (15). For this, we shall first insert new variables
x and y in place of £ and n, assuming

€= x+x, n=Y+Yo- (19)




The transformed equations will have the form

d’x , T dy _T° @R
4dr? BT AT T an ox ’
(20)
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where
R(x, y) =Q(x+x%9, y+Yyo) (21)

Since all periodic orbits lie in an area where function () is
holomorphic, function R(x,y) will also be a holomorphic function, at
least for values of x and y,the moduli of which are sufficiently small.
Therefore, function R(x,y) can be represented in the form of a series

with coefficients periodic in relation to 7. This series will be written
as follows:

1 1
R=7p11(T)XZ+p12(T)Xy+zpzz(T)Y2 + e, (22)

where the first coefficients will be determined by formulas
p11{T) = p-baxe+12Bxi-6P5 +...,
P12(T) = 3ayo —12Bxeye + ..., (23)

9
P22 (T) = —q+30% - 6x; +5 By + ...

These coefficients are periodic functions of T, with common period
2w and, in addition, are dependent on parameter c. Since these
coefficients are values of partial derivatives of holomorphic function
Q(x+Xo, Y+Vo) wWith x=y=0, series (23) will be absolutely convergent
in the area where this function is. holomorphic, and therefore
coefficients pi11(7T),p12(7), p22(7),. . . can be represented in the form of
series placed according to increasing degrees of parameter c and
absolutely convergent at all values of T and with lcl <&, These
series will have the form
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pu(t) =p +opl (M+pUm)+.. .,
A
p127) = cplh (T) + PR (T) 4. . ., (24)
h 2 b
P22AT) = —q+cp(T) + CPp22(T)+. ..,
where all coefficients p(11)1("'), p(i,Z(T), phz\z(‘r). ..are periodic functions of

T with common period 2w. Thus, our problem of periodic motion
stability is reduced to a problem of stability of trivial equation

x=0,y=0 (ST)
of a system with periodic coefficients (20).

According to the general Lyapunov theory, we shall first examine
the equations in variations corresponding to system (20). These

equations in the variations will be written as follows:

2
d"x nT dy T

- 2n— L = T)x + T ,
q > ar e [pu( ) P12 )Y]
(25)
d’y T dx T?
+ —_— e = — TIX + T
o o T = [Pra{ T)x + p2a( T)]

and will represent a system of linear equations with periodic coefficients.
The problem of stability (ST) of system (25) depends, as is known, on the
nature of the roots of the characteristic equation of system (25). Since
system (25) can be reduced to canonical form, its characteristic equation
will have the form?

p*+ Ap® + Bp + Ap +1 =0, (26)

and coefficients A and B will be holomorphic functions of parameter ¢
and can be represented in the form of series located by increasing
degrees of ¢ and absolutely convergent at |c| < Tt

To determine the nature of the roots of Equation (24), we shall
see what we shall have with ¢ = 0. Assuming in Equation (25) ¢ = 0,
we shall obtain a system with constant coefficients




(27)

dy 2n dx q

a2’ N ar e’ ’

the determining equation of which will have the form
1
4 2, 2 P9
-— -q-4 -— =0.
X > (pP-g-4n")x v (28)

Therefore, the roots of Equation (28) will be
. . A2 A N
1, =1, T’ _T (1= -1)! (29)

but system (27) can also be viewed as a system with periodic coefficients;
therefore, for system (28), we can also build a characteristic equation
of the same form as Equation (26). There is no need to set up the latter
equation. The roots of the determining and characteristic equations

of a system with constant coefficients are connected by formula’

p=e’™™, (30)

and since values of x are known, we immediately obtain corresponding
values of p :
2.11')\]_ _ZTTLI
1, 1, eN , e M | (31)

Hence, it is evident that with ¢ = 0 Equation (26) possesses one root,
‘the modulus of which is greater than one. Since A and B are holomorphic
functions of ¢ and since the above-mentioned root is simple, according

to the theorem of the existence of implicit functions® , Equation (26)
2T\,
with ¢ # 0 will have a single root, tending to e\ , when c tends to

zero. Therefore, with sufficiently small values of lcl Equation (26)
will obviously have a root the modulus of which is greater than one.
According to Lyapunov's7 results, we conclude that (ST) of system (25)
and (ST) of system (20) will be unstable.

This means that all periodic motions close to collinear points of
libration in the restricted problem of three bodies also possess orbital
instability, and the problem of stability of these periodic motions has
thus been elucidated by us.
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